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Integration of fuzzy spatial relations in deformable
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Abstract

This paper presents a general framework to integrate a new type of constraints, based on spatial relations, in deformable models. In
the proposed approach, spatial relations are represented as fuzzy subsets of the image space and incorporated in the deformable model
as a new external force. Three methods to construct an external force from a fuzzy set representing a spatial relation are introduced and
discussed. This framework is then used to segment brain subcortical structures in magnetic resonance images (MRI). A training step is
proposed to estimate the main parameters defining the relations. The results demonstrate that the introduction of spatial relations in a
deformable model can substantially improve the segmentation of structures with low contrast and ill-defined boundaries.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Spatial relations constitute the basic elements contained
in linguistic descriptions of spatial configurations and de-
scribe the organization of the different objects in an image.
These relations are usually classified into different types in-
cluding topological, distance and directional relations [1].
Their importance has been highlighted in many domains re-
lated to computer science and engineering, such as artificial
intelligence [1], computational linguistics [2], geographic
information systems [3] or autonomous robotics [4].

In image analysis and pattern recognition, these relations
provide structural knowledge by opposition to image fea-
tures such as gray level or texture. Their ability to describe
scenes [5,6] makes them potentially useful for a wide range
of imaging applications including aerial imaging [5,7], face
recognition [8] and medical imaging. Moreover, being close
in essence to the natural language description, they can be
easily understood and manipulated by a non-technical user
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who will then be able to interact more efficiently with image
analysis procedures.

The analysis of brain magnetic resonance images (MRI)
is a typical example of imaging application in which spatial
relations can be useful. Indeed, the human brain is a struc-
tured scene and spatial relations are ubiquitous in natural
language descriptions found in neuroanatomy textbooks [9].
Furthermore, relations between brain structures are more
stable among individual subjects and less dependent on the
acquisition parameters than the characteristics of the struc-
tures themselves. They can thus be a source a robustness for
automated procedures.

Fuzzy sets constitute an appealing framework to repre-
sent spatial relations. Indeed, since they correspond to lin-
guistic propositions, spatial relations are often intrinsically
imprecise and fuzzy sets allow modeling this imprecision.
The satisfaction of a given relation will then be defined as
a matter of degree rather than in an “all-or-nothing” man-
ner. Moreover, fuzzy sets provide a common framework to
represent different types of individual spatial relations. In
particular, the relations can be easily combined using fuzzy
fusion operators. The fuzzy set framework has been used
to represent different types of spatial relations including
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adjacencies [10], distances [11], directions [12], symmetries
[13] and complex relationships such as “between” [14].

Spatial relations have been used in a relatively small num-
ber of pattern recognition applications. Keller and Wang [5]
used spatial relations to automatically generate linguistic de-
scriptions of images. Le Ber and Mangelinck [7] used topo-
logical relations to analyze satellite images. A handwritten
recognition system based on directional relations has been
proposed by Wang et al. [15]. Géraud et al. [16–18] have
proposed to use fuzzy spatial relations for brain structure
recognition on MRI. These relations were subsequently used
for the same application in [19] in which they were com-
bined to a possibilistic clustering method using a fusion
framework. In all these applications, spatial relations were
used for high-level tasks (i.e. recognition) and not directly
integrated in the segmentation itself which was based only
on image characteristics. However, spatial relations could
be of great help to find the contours of poorly contrasted
objects, with ill-defined boundaries or sharing similar inten-
sities with their neighbors.

Several segmentation approaches implicitly integrate the
spatial relationships between the objects of a scene. Atlas-
based methods, e.g. [20,21], compute a nonlinear transfor-
mation between the target image and a labeled template. In
such a way, the relations between the objects in the template
are implicitly modeled. Point distribution models, which are
used in active shape models [22], can infer not only the
shape of individual objects but also the relations between
them from a training set of instances. However, in these ap-
proaches, the spatial relations are defined implicitly in ei-
ther the template or the training set and are not specified
individually. We propose a different approach which aims at
integrating explicitly individual spatial relations in the seg-
mentation process. This should allow to model more directly
expert knowledge expressed as linguistic descriptions and
to explicitly choose the constraints which will be included
in the segmentation, for example keeping only the relations
which are anatomically meaningful.

Deformable models [23] refer to a large class of computer
vision methods and have proved to be a successful segmen-
tation technique [24] for a wide range of applications. More-
over, they constitute an appropriate framework for merging
heterogeneous information such as image features and spa-
tial relations. However, the accuracy of the segmentation re-
sults can be deteriorated when strong edges are lacking in
the image. In those cases, the deformable model may leak
through the boundaries of the objects. Spatial relations could
help overcoming this difficulty by providing additional in-
formation about the spatial extension of the objects.

In this paper, we thus propose a methodology to intro-
duce prior constraints based on fuzzy spatial relations in
a deformable model. Spatial relations are represented as
fuzzy subsets of the image space and are integrated in the
deformable model as a new external force. The proposed
framework is then used to segment brain subcortical struc-
tures in MRI. Our experiments show that adding spatial

relations to a deformable model can prevent it from being at-
tracted by contours of irrelevant objects and from progress-
ing beyond the limits of structures with weak boundaries.

This paper is organized as follows. In Section 2, we briefly
review the underlying principles of deformable models and
present computational representations of spatial relations.
Section 3 is devoted to the combination of spatial relations
and deformable models. In Section 4, the proposed frame-
work is applied to the segmentation of brain subcortical
structures in MRI.

2. Background

2.1. Deformable models

Deformable models [23], also called active contours or
snakes, are curves or surfaces evolving within an image from
a starting point to a final state that should correspond to
the target object (i.e. the object we want to segment). Two
types of information drive the evolution: a data term that
attracts the model towards the edges of the image and a
regularization term that forces the model to stay smooth and
regular. The evolution of a deformable model can be written
as the minimization of the following energy [23]:

E(X) = Eint (X) + Eext (X), (1)

where X is the deformable contour (or surface in 3D), Eint

is the internal energy that specifies the regularity of the con-
tour and Eext is the external energy that drives the contour
towards image edges. The external energy is computed by
integrating on the contour a potential P that should be mini-
mum on image edges: Eext (X)=∫

[0,1] P(X) ds. In the orig-
inal formulation [23], the potential P is derived from the
image gradient.

The evolution can also be described by the following
dynamic force equation [24]:

�
�X
�t

= Fint (X) + Fext (X), (2)

where Fint is the internal force and Fext the external force.
This expression is linked to the energetic formulation by
Fext (X)=−∇P(X). However, this equation is more general
since it allows using external forces that do not derive from
an energy potential.

A considerable amount of research has been carried out
on deformable models. Different external forces have been
proposed to provide more robustness and a broader attraction
range than the image gradient, e.g. [25,26]. Region-based
forces have been designed and applied to the segmentation
of textured images [27]. Furthermore, several authors have
introduced prior shape constraints in deformable models,
e.g. [22,28,29]. More details are beyond the scope of this
paper and can be found in Refs. [24,29].

On the contrary, to our knowledge, fuzzy spatial relations
have never been introduced in this context. Xu et al. [30] used
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a force computed from fuzzy sets in a deformable model.
However, these fuzzy sets were derived from image features
and not from structural knowledge. They represented a de-
gree of membership to gray-level classes (of gray and white
matter in a cortex reconstruction application) obtained with a
fuzzy classification. Pitiot et al. [31] introduced a deformable
model driven by expert knowledge. They presented a general
evolution framework which allows including heterogeneous
information composed of shape, texture and distance con-
straints. In particular, they proposed to compute a force from
distance relations. Nevertheless, they did not consider other
types of spatial relations such as directions. On the contrary,
our aim is to take advantage of the common framework pro-
vided by fuzzy sets to propose a force construction method
that can be used for different types of spatial relations.

2.2. Spatial relations

2.2.1. Representation approaches
We consider spatial relations that define the position of

a target object with respect to a reference object. To illus-
trate our purpose, let us provide some examples of spatial
relations between brain structures:

• direction: the left (respectively, right) thalamus is on the
left (resp. right) of the third ventricle and below the lateral
ventricle;

• distance: the caudate nucleus is near the lateralventricle.

In these two examples, the caudate nucleus and the thalamus
are target objects and their position is defined with respect
to the ventricles, which are chosen as reference objects. For
example, to segment the thalamus, our aim will be to con-
strain the deformable model to satisfy the spatial relations on
the left of the third ventricle and below the lateral ventricle.

In order to integrate spatial relations in deformable mod-
els, it is first necessary to provide a computational rep-
resentation of the relations. Approaches for representing
spatial relations can be divided into qualitative and quan-
titative methods. The first ones often rely on formal logic
[1,32,33] and do not seem appropriate for an integration in
a numerical setting such as deformable models. On the con-
trary, quantitative methods provide a numerical evaluation of
the relations. An additional distinction can be made between
quantitative methods: a first type of approach evaluates spa-
tial relations between two given objects; a second type de-
fines the satisfaction of a relation, with respect to a given
reference object, at each point of the space. The first one
has been applied to a large number of relations, including
fuzzy adjacencies [10], distances [11], symmetries between
fuzzy objects [13] and the representation of directional rela-
tive position based on the histograms of angles [34] or forces
[35]. Nevertheless, this type of approach is not suitable to
our problem since our aim is to make the deformable model
evolve towards the points where the relation is fulfilled. It is
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Fig. 1. Fuzzy intervals on the set of distances corresponding to relations
“near” and “far from”.

thus necessary to compute the degree of satisfaction of the
relation at each point of the space.

We make use of the second type of approach in which
spatial relationships are represented as fuzzy subsets of the
image space (2D or 3D). In the present work, directional and
distance relations are considered. However, the framework is
general and other types of relations could be integrated, the
only restriction being that they must be modeled as spatial
fuzzy sets.

2.2.2. Distances
For distance relations such as “near”, “at a distance ap-

proximately equal to”, “far from”, we define a fuzzy inter-
val f of trapezoidal shape on the set of distances R+ [36]
(Fig. 1). The kernel of f is defined as [n2, n3] and its sup-
port as [n1, n4], where 0�n1 �n2 �n3 �n4. For the rela-
tion “near” one has n1 = n2 = 0, and n3 and n4 are defined
according to prior knowledge on the largest distance from a
point in the target object to a point in the reference object.
Similarly, for the relation “far from”, n1 and n2 are defined
according to the smallest distance. To obtain a fuzzy subset
of the image space, f is combined with a distance map dA

to the reference object A:

�d(P ) = f (dA(P )), (3)

where P is a point of the space. Fig. 2(a) presents an example
of a fuzzy set corresponding to a distance relation.

2.2.3. Directions
Directional relations are represented using the fuzzy land-

scape approach [12]. Let u be a unit vector corresponding
to the direction under consideration, let P be a point of the
space, Q a point of the reference object A and �(P, Q) the
angle between vectors QP and u computed in [0, �]. We
then define, for every point P:

�min(P ) = min
Q∈A

�(P, Q). (4)

The fuzzy subset of the image space representing the relation
is

��(P ) = g(�min(P )), (5)

where g is a decreasing function from [0, �] to [0, 1]. A
common choice for g is g(�) = max[0, 1 − (2/�)�]. More
generally, one can choose a trapezoidal interval, like in the
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Fig. 2. Fuzzy sets representing distance and directional relations. (a)
Distance: “near the lateral ventricle”. The reference object is superimposed
on the fuzzy set. The values of the fuzzy set decrease when going away
from the reference object. (b) Direction: “on the left of the third ventricle”.
Values of the fuzzy set decrease when going away from the direction
under consideration. (c) Direction: “below the lateral ventricle”. In all the
figures, we represent spatial fuzzy sets with the convention: “bright areas
correspond to high values”.

case of distances, or a trigonometric function. In Section
4.3, a learning procedure is proposed to estimate the pa-
rameters defining functions f and g. Examples of fuzzy sets
representing directions are shown in Figs. 2(b) and (c).

3. Integration framework

3.1. Overview

Our purpose is to introduce spatial relations in the evo-
lution scheme of a deformable model. We choose the dy-
namic force formulation of the evolution (Eq. (2)) because
it is more flexible in the choice of the external term. We
propose to represent a spatial relation as a new force that
will constrain the deformable model to fulfill the relation.
The external force Fext in Eq. (2) is replaced with a force
describing both edge information and structural constraints:

Fext = �FC + �FR , (6)

where FC is a classical data term that will drive the model
towards the edges, FR is a force associated to spatial rela-
tions and � and � are weighting coefficients.

Since a spatial relation is represented by a fuzzy subset
of the image space, we will propose a method to construct
the force FR from a fuzzy set. When several relations are
involved in the description of the target object, they are com-
bined using fusion operations between fuzzy sets [37]. The
combination of several relations will thus be represented by
a single force, corresponding to the fuzzy set obtained by
the fusion. In the following, we will use t-norms for con-
junctive fusion and t-conorms for disjunctive combination
[38]. The choice of a particular t-norm or t-conorm depends
on the degree of severity or indulgence that is required for
the fusion. We use the t-norm “minimum” and “product”
which correspond to indulgent conjunctions. Fig. 3(a) shows

Fig. 3. Computation of a force from a fuzzy set corresponding to spatial
relations. (a) The fuzzy set representing the conjunction of spatial relations
“on the left of the third ventricle and below the lateral ventricle”. The
fuzzy set corresponds to the fusion of the sets presented in Figs. 2(b,
c), using the t-norm “product”. (b) Force F1

R
using the fuzzy set as an

energy potential. (c) Force F2
R

using a distance potential force. (d) Force

F3
R

using a gradient diffusion technique. The three forces are directed
towards the points of the space where the relation is fulfilled. To enhance
visualization, forces are displayed with a 1

3 under-sampling.

an example of conjunction using a t-norm of the fuzzy sets
presented in Figs. 2(b) and (c).

3.2. Construction of the force FR

3.2.1. Required properties
Let R be a fuzzy set representing a spatial relation (or a

combination of relations) and �R its membership function.
The force FR should drive the deformable model towards
regions where the relation is fulfilled and thus be directed
towards high values of �R . When the relation is completely
satisfied, the model should be driven by edge information
only, i.e. FR should be zero in the kernel of R. The less
the relation is satisfied, the higher the modulus of the force
should be, thus we impose it to be proportional to (1 −�R).
Finally, the computation time for the force should be rea-
sonable. In the following, we propose three different con-
struction methods for FR that fulfill these properties.

3.2.2. Using the fuzzy set as a potential
A first idea could be to derive an energy potential directly

from the fuzzy set, e.g. PR = 1 − �R , leading to a potential
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force FR = −∇PR . However, such a force would obviously
have zero values outside the support of R, which is highly
undesirable as the relation is completely unsatisfied in this
region. This can be solved by adding to the potential the
distance from the support, then defining:

P 1
R(P ) = 1 − �R(P ) + dsupp(R)(P ), (7)

where dsupp(R) is the distance from the support of R. With
the following normalization, the force is proportional to (1−
�R), as required in the properties:

F1
R(P ) = −(1 − �R(P ))

∇P 1
R(P )

‖∇P 1
R(P )‖ . (8)

An example of external force computed using this approach
is shown in Fig. 3(b).

3.2.3. Using a distance potential force
Distance potential forces [25], defining a potential as a

function of a distance map to a binary edge detector, provide
a broad attraction range, which is of interest in our case
since FR should be non-zero everywhere outside the kernel
of R. Nevertheless, since we want to replace the edge map
with the fuzzy set, we need to use a fuzzy distance instead
of a classical one. For instance, good properties would be
obtained with the fuzzy morphological distance [11]:

d� = 1 − D�(�R), (9)

where � is a structuring element with radial symmetry:
�(x, y, z) = 1 − √

x2 + y2 + z2/k and k is the size of this
element.

A potential would then be defined as

PR(P ) = g(d�(P )), (10)

where g is a non-decreasing function, e.g. g(x) = −1/x.
However, the morphological distance is computationally

expensive. For 3D applications, we recommend to replace it
with a classical distance such as the distance to the kernel
of R:

P 2
R(P ) = g(dKer(R)(P )), (11)

where dKer(R)(P ) is a distance map to the kernel of R.
The corresponding force, denoted by F2

R , is computed using
the same formula as in Eq. (8). Fig. 3(c) presents a force
constructed using this equation.

3.2.4. Using a gradient diffusion technique
Using a gradient vector diffusion technique also allows

having a wide attraction range. The gradient vector flow
(GVF), introduced by Xu et al. [26], computes a smooth
vector field while being close to the original gradient in
the regions where it has high values. Here, we replace the
edge map with our fuzzy set �R in the GVF formulation.

The GVF is the vector field v that corresponds to the steady-
state of the following equation:{ �v

�t
= c∇2v − ‖∇�R‖2(v − ∇�R),

v(P, 0) = ∇�R(P ).
(12)

The first equation is a combination of a diffusion term that
will produce a smooth vector field and a data term that forces
v to stay close to ∇�R . The parameter c defines the trade-off
between the two terms. In regions where ‖∇�R‖ is low, the
diffusion term will prevail. In particular, inside the kernel
and outside the support of R, only diffusion will occur, giving
a non-zero force. However, as we want the force to be zero
in the kernel, we will use the following normalization:

F3
R = (1 − �R)

u
‖u‖ , (13)

where u is the GVF. An example of this force is shown in
Fig. 3(d).

3.3. Example

In order to illustrate the role of spatial relations in a de-
formable model, Fig. 4 presents a basic example on a syn-
thetic 2D image representing a portion of the brain (extracted
from the BrainWeb database1). The goal is to segment the
caudate nucleus. The evolution is governed by a regulariza-
tion term (the one proposed by Kass et al. [23]), a data term
and a spatial relation force. The data term is a GVF [26]
computed on an edge map and drives the model towards the
contours of the image (Fig. 4(b)). The spatial relation force
constrains the result to be “to the right of the ventricle”
(Fig. 4(c)). Here we present the force F3

R but the same seg-
mentation results were obtained with the other methods.
These two forces are combined using Eq. (6) (Fig. 4(d)).
When only data and regularization terms are considered
(Fig. 4(e)), the model is attracted by the first strong edges
that it encounters. On the contrary, when the spatial relation
term is added (Fig. 4(f)), the deformable contour avoids ob-
jects that do not fulfill the relation and converges towards the
target one. This example illustrates that spatial relations can
prevent deformable models to be attracted by the contours
of irrelevant objects and allow initializing them far from the
target structures.

3.4. Discussion

The three proposed forces fulfill the required properties
but they are not equivalent.

First, F1
R and F3

R are directed towards increasing values
of �R because they are computed using the gradient of the
fuzzy set. In the particular case of a fuzzy set with local
maxima outside its kernel, they point towards these maxima.

1 http://www.bic.mni.mcgill.ca/brainweb/

http://www.bic.mni.mcgill.ca/brainweb/
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Fig. 4. Basic example of deformable model driven by spatial relations. (a) The image is a portion of a simulated brain MRI and shows the lateral
ventricles (LV) and the caudate nuclei (Cd). The target object is the right caudate nucleus. (b) Data term that drives the deformable model towards the
edges of the image (a gradient vector flow). (c) Force F3

R
representing the spatial relation “to the right of the ventricle (in black on the image)”. (d)

Combination of the two previous forces using Eq. (6). (e) Evolution: using only the data term and starting from the white rectangle on the left image,
the deformable model is attracted by the first strong edges that it encounters. (f) Using the combination of both the data term and the spatial relation, it
is able to converge towards the caudate nucleus.

On the contrary, F2
R is always directed towards the kernel

of R. These differences can be appreciated in Fig. 3. More-
over, whereas F1

R and F2
R are computed directly from the

fuzzy set or from its kernel, F3
R introduces an additional

regularization. Finally, the computational cost of F1
R and

F2
R is very low (5 s for a 128 × 128 × 124 image on a PC

Pentium III 1 GHz). The computation time is higher for F3
R

(3 min), while staying reasonable, this being the price for
regularization.

The choice of one of these three forces will depend on the
application at hand. If the fuzzy set has local maxima and
if one wants the deformable model to be attracted by these
maxima, F1

R or F3
R should be used. On the contrary, if these

local maxima are thought to represent unreliable informa-
tion and the target object should be found inside the kernel
of �R , it is preferable to use F2

R . Finally, if such maxima are

not present, the three forces should lead to similar results.
Moreover, if the computational speed is a crucial require-
ment of the application, F1

R or F2
R will be preferred. On the

contrary, if one wants to obtain a smoother force, to correct
possible imperfections of �R , F3

R can be used.
An additional comment concerns the combination scheme

proposed in Eq. (6). It is also possible to use the fuzzy set as a
weighting function for the data term, thus not taking the latter
into account where the relation is completely unfulfilled:

Fext = ��RFC + �FR . (14)

It should be noted that all these results are also valid with a
crisp set instead of a fuzzy one. In that case, forces F1

R and
F2

R are equal since their support is identical to their kernel.
The proposed framework is valid in two or three dimen-

sions. Moreover, it does not depend on the choice of the



O. Colliot et al. / Pattern Recognition 39 (2006) 1401–1414 1407

internal force, of the data term or of the geometry of the de-
formable surface. In the next section, we choose a discrete
representation based on simplex meshes [39] and a data term
built using the GVF [26].

4. Application to the segmentation of brain structures
in MRI

We applied the proposed framework to the segmentation
of brain subcortical structures in T1-weighted MRI. The
method is sequential: each structure is segmented separately
relying on the spatial relations with respect to previously
obtained structures. The core of our method is composed
of a 3D deformable model, constrained by spatial relations
between brain structures as proposed in the previous section.

We segmented the caudate nuclei, the thalami, the lat-
eral ventricles and the third ventricle. Since they are well-
contrasted and easier to segment, the ventricles are extracted
first and are used as reference objects for segmenting the
caudate and the thalamus. The principle of the method is
general and can be applied to other structures.

4.1. 3D deformable model

To implement the deformable surface in three dimensions,
we choose a discrete representation based on simplex meshes
which allows a fast convergence of the model and a simple
discretization of the internal force. Simplex meshes, intro-
duced by Delingette [39], are topologically dual to triangu-
lations and have a constant vertex connectivity.

4.1.1. Evolution
The evolution of the deformable surface S is driven by

the following equation:

�
�S
�t

= Fint (S) + Fext (S). (15)

Fint is the internal force controlling the regularity of the
surface:

Fint = �∇2S − �∇2(∇2S), (16)

where � and �, respectively, control the surface tension (pre-
vent it from stretching) and rigidity (prevent it from bend-
ing) and ∇2 is the Laplacian operator. It is then discretized
on the simplex mesh using the finite difference method [40].

Fext is the external force and represents the combination
of a data term and a force corresponding to a spatial relation,
as proposed in Section 3:

Fext = �FC + �FR . (17)

FR is a force associated to spatial relations. In the follow-
ing experiments, this force has been computed using the
first method F1

R . However, similar results would be obtained
with the two other approaches since the fuzzy sets that we

consider do not possess local maxima outside their kernel.
The spatial relations that define the force FR correspond to
anatomical descriptions of the gray nuclei, defined in col-
laboration with a neuroanatomist [41]:

• caudate nucleus: near and to the left (or right) of the
lateral ventricle;

• thalamus: to the left (or right) of the third ventricle and
below the lateral ventricle.

The data term FC is a GVF [26], computed from an edge
map, which produces a broad attraction range and allows
progressing into boundary concavities. In the next section,
we propose an original method to compute an edge map for
the gray nuclei.

4.1.2. Edge map computation
Two main difficulties appear when detecting the edges of

the gray nuclei in MRI: the noise and the lack of contrast
of the gray/white interface. Linear spatial filtering which
is usually associated to Canny–Deriche edge detectors [42]
is inadequate in this case as it would mix contours of thin
elongated objects such as the caudate nucleus. Anisotropic
diffusion [43] is an efficient way to remove noise in homoge-
neous regions while preserving and even enhancing edges.
However, due to the poorly defined borders of the gray nu-
clei, this edge enhancement is insufficient.

We propose to enhance edges by computing the gradient
on a probability map indicating for each voxel its member-
ship to a given structure. This probability is computed as

P(x) = p(I (x)), (18)

where I is our image. Its gradient is related to the gradient
of I by

∇P(x) = p′(I (x))∇I (x), (19)

where p′ is the first-order derivative of p. This means that
edge enhancement will occur in the neighborhood of the ex-
trema of p′. If we choose p to be a Gaussian function Gm,	
of mean m and standard-deviation 	, edges will be enhanced
in the neighborhood of m ± 	. The mean intensity mN and
the standard deviation 	N corresponding to a given nucleus
N are computed using a modeling of the radiometric charac-
teristics of the gray nuclei as a function of the intensities of
gray and white matter [44]. We then empirically choose to
enhance the transition between the gray nuclei and the ven-
tricles at mN −2	N and the transition with the white matter
at mN + 	N .

To reduce the noise, we finally apply an anisotropic diffu-
sion on the probability map. Applying it on the map rather
than on the original image has the additional advantage to
normalize the image, allowing choosing the same diffusion
parameter for all images. Fig. 5 presents an edge map com-
puted for the caudate nucleus and the corresponding GVF,
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Fig. 5. Edge map for the caudate nucleus (axial slices): (a) original
image (the caudate nucleus is indicated by the label “Cd”), (b) gradient
computed on the original image, (c) probability map, (d) edge map:
gradient computed on the probability map after anisotropic diffusion, (e)
gradient vector flow (GVF) computed on the previous edge map, (f) zoom
on a portion of the GVF.

which is used as the data term FC in the deformable model
evolution.

4.1.3. Initialization
In order to obtain a faster and more accurate convergence

of the deformable model, we construct an initial segmenta-
tion that is used as a starting point for the evolution. This
step is composed of simple thresholding and morphological
operations and also makes use of spatial relations describ-
ing the target object. This initial segmentation is illustrated
in the case of the caudate nucleus in Fig. 6.

First, a region of interest (ROI) is constructed to restrict
the search of the target structure (Fig. 6(a)). This ROI is
defined by the fuzzy set corresponding to the relations that
should be satisfied by the target object. If a single relation
is involved in the description of the structure, the ROI is
defined by the fuzzy set corresponding to this relation. When
several spatial relations are involved, the ROI corresponds
to the fusion of the fuzzy sets representing these relations
(see Section 3.1 for the description of fusion operations). As
for the ventricles, the ROI is the region “far from the brain

surface”. For the right (resp. left) caudate nucleus, the ROI
corresponds to the region “near and on the right (resp. left)
of the lateral ventricle”. For the right (resp. left) thalamus,
it is defined as “below the lateral ventricle and to the right
(resp. left) of the third ventricle” (this corresponds to the
descriptions given in Section 4.1.1).

An automatic thresholding is then performed in the
ROI (Fig. 6(b)). For the ventricles, the threshold range is
[0, mGM − 2	GM ], where mGM and 	GM are the mean
and standard deviation of the gray matter. For the caudate
and the thalamus, the threshold values are mN − 	N and
mN + 	N , where mN and 	N are the radiometric character-
istics of the considered gray nucleus, estimated as for the
edge map (Section 4.1.2). These values were chosen empir-
ically on the available acquisition sequences. They should
not be critical as the segmentation will be refined with the
deformable model.

We then need to separate the different objects extracted
by the thresholding and to select the one we want to seg-
ment (Fig. 6(c)). To this purpose, we use a morphological
opening, whose optimal size is found iteratively. Openings
of increasing size are computed successively until a con-
nected component matching the characteristics of the object
is found. At each step, an opening of a given size is per-
formed and the connected components are extracted. If one
of the components matches the characteristics of the target
object, this component is chosen. If none of the components
verify this condition, the process is iterated with a larger
opening. The sizes of the openings are successively: 6-, 18-,
26-connectivity, 2 mm, . . . . The characteristics which are
used to select the components are composed of the spatial
relations associated to the target object as well as its size
and/or position. Specifically, for the ventricles, we used the
size and position. For the caudate and the thalamus, we used
the size and the spatial relations. Threshold values for these
characteristics were roughly tuned manually. They do not
seem sensitive since we used the same values for all im-
ages. Moreover, for the size and the position, we chose the
thresholds in a very tolerant manner to account for their
variability.

Finally, possible holes in the previous results are filled
with a morphological closing and we obtain the initial seg-
mentation (Fig. 6(d)). The iterative procedure together with
the post-processing proved to be robust and adapted to all
our test images.

This segmentation is then transformed into a triangulation
using an isosurface algorithm based on tetrahedra [45]. It
is decimated and converted to a simplex mesh by the dual
operation. Finally, its topological quality is optimized to
make faces regular. This simplex mesh is used as the starting
point of the deformable model (Fig. 6(e)).

It should be noted that for the ventricles, we do not make
use of the deformable model evolution. Indeed these struc-
tures are well-contrasted and the initial segmentation proved
sufficient for our purpose which is to provide a reference for
the processing of the gray nuclei.
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Fig. 6. Initialization for the caudate nucleus (axial slices): (a) contour of the kernel of the region of interest superimposed on the MRI (the caudate is
indicated by the arrow); (b) automatic thresholding in the region of interest; (c) separation of objects using a morphological opening of optimal size and
selection of the target object; (d) initial segmentation; (e) simplex mesh corresponding to this initial segmentation.

4.2. Pre-processing

The following pre-processing steps are applied prior to
the segmentation of brain structures. Images are first lin-
early registered into a common stereotaxic space [46], which
allows roughly normalizing the position and size of struc-
tures that are used to construct the initialization. MR im-
ages are then corrected for intensity non-uniformity [47],
which produces consistent intensities for the different tis-
sues throughout the volume. Finally, the brain is extracted
using a robust method based on morphological operations
[48]. This eliminates radiometric classes that are of no in-
terest to our application (scalp, air, skull…). Nevertheless,
whereas we systematically use the non-uniformity correc-
tion before extracting the brain, we suggest not to use it
for the gray nuclei because their contrast is altered by this
correction.

4.3. Parameter learning

Parameter tuning is an important step in segmentation
procedures. Even though we had obtained good results with
only a rough manual tuning [41], more robustness can be
obtained using a learning of the parameters on a training set
of manually segmented structures. In particular, we propose
to estimate the parameters involved in the construction of
the fuzzy sets corresponding to distances and directions. As
we will see from the experiments (Section 4.4), the others
parameters of the method are not critical and thus do not
need a training.

For a given spatial relation, the parameters should be set
so that the corresponding fuzzy set enclose the target object.
The parameters involved in the computation of distances
and directions are the ones that define the functions f and g
in Eqs. (3) and (5). These functions are fuzzy intervals of

trapezoidal shape. Their kernel and their support are defined
based on the maximum (or minimum) distance or angle.

For the distance relation “near”, the training consists in
the computation of the maximum distance from a point P of
the target object B to the reference object A:

dmax = max
P∈B

(dA(P )). (20)

Similarly, for the relation “far from”, the minimum distance
dmin is computed.

For directions, we calculate the maximum value of
�min(P ) (as defined by Eq. (4)) for points P in the target
object B:

�max = max
P∈B

(�min(P )). (21)

For the training set, the mean m and standard deviation
	 of dmax , dmin or �max (depending on the type of spatial
relation) are computed. Using these values, fuzzy intervals f
and g are chosen with kernel [0, m] and support [0, m+2	]
to take into account the possible variability of the parameters
in the training set.

4.4. Results and discussion

4.4.1. Parameter learning
The training was performed for the caudate nucleus which

was manually segmented in 10 MRI. Spatial relations de-
scribing the caudate are as follows: it should be “near” and
“on the left (resp. right)” of the ventricle. Therefore, for each
of them, we calculated the maximum distance dmax and an-
gle �max . The mean m and standard deviation 	 of dmax and
�max were then computed. Results are presented in Table 1.

The spatial relations defining the thalamus are the direc-
tions “to the left (resp. right) of the third ventricle” and “be-
low the lateral ventricle”. No training was performed for
this structure and we obtained satisfactory results by using
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Table 1
Results of the training of the parameters involved in the definition of
spatial relations for the caudate nucleus

Left hemisphere Right hemisphere

dmax (in mm) 13.8 ± 1.5 13.4 ± 1.3
�max (in radians) 1.1 ± 0.1 1.03 ± 0.1

Values are shown as m ± 	, where m is the mean and 	 the standard-
deviation.

g(�) = max[0, 1 − (2/�)�] which is a common choice for
directional relations (see Section 2.2.3).

4.4.2. Segmentation results
We segmented the lateral ventricles, the third ventricle,

the caudate nuclei and the thalami in 10 T1-weighted MRI.
Results were visually inspected and were found to satis-
factorily delineate the structures (an example is shown in
Fig. 7). The ventricles are not very difficult to segment as
they possess a high contrast with surrounding structures. The
caudate nucleus and the thalamus are much more challeng-
ing since their boundaries are often weak and ill-defined.
Most parts of the caudate were accurately delineated. In
particular, it was successfully separated from neighboring
structures such as the putamen and the nucleus accumbens,
thanks to the spatial relations. The only exception concerned
the posterior part of the body and the tail which are very
thin structures, usually not processed in automated methods
[21,28] (the tail was also excluded from the manual segmen-
tations as done in [31]). As for the thalamus, the edge map
we proposed in Section 4.1.2 proved to be very useful, pro-
viding a much stronger gradient than if it would have been
computed from the original image. Moreover, its lower limit
is uneasy to find and the relation with respect to the third
ventricle has helped to provide an adequate initialization to
the deformable model. Finally, the deformable model cor-
rected the irregularities of the initial result.

In the case of the caudate nucleus, we performed a quan-
titative validation by comparing automated and manual seg-
mentations on the 10 images of the training set. Parameters
were estimated using a “leave-one-out” approach: for the
processing of a given image, the training was done only on
the 9 others. This strategy allows using the training set as a
test group without introducing any bias in the result.

Results were quantitatively assessed using the follow-
ing measures. We made use of the similarity index [49,21],
which is a special case of kappa statistic:

S = 2|M ∩ A|
|M| + |A| , (22)

where M is the manual label, A is the automatic one and
|.| is the cardinal. This measure is sensitive to variations in
shape, size and position. We also computed error measures
derived from the partial Hausdorff distance and the mean ab-
solute distance between automatic and manual contours, as
proposed in [31]. Given the previous manual and automatic

labels, denoted as M and A, respectively, the asymmetric
Hausdorff distance between the corresponding manual and
automatic contours Mc and Ac is defined as

Hasym(Mc, Ac) = max
x∈Mc

(
min
y∈Ac

dE(x, y)

)
, (23)

where dE(x, y) is the Euclidean distance between points x
and y. The symmetric Hausdorff distance is then defined as
the maximum of Hasym(Mc, Ac) and Hasym(Ac, Mc). How-
ever, as pointed out in [31], this measure is highly sensi-
tive to outliers and we thus considered the 95th percentile
of the symmetric Hausdorff distance.2 Similarly, we also
computed a symmetric mean absolute distance by taking the
average of the mean absolute distances from Mc to Ac and
from Ac to Mc.

Table 2 presents the results of the evaluation. The mean
similarity was 0.87 which corresponds to a strong agree-
ment between manual and automated segmentations. The
95th percentile of the symmetric Hausdorff distance and the
mean absolute distance were 2.2 and 1 mm, respectively,
which indicates that, for the vast majority of points, the con-
tours of the automated segmentations closely follow those
of the manual labels.

The similarity index obtained with our method in the case
of the caudate nucleus is close to those reported in Refs. [21]
(0.86) and [50] (0.91). The 95th percentile of the symmet-
ric Hausdorff distance and the mean absolute distance are
similar to those obtained by Pitiot et al. [31], when includ-
ing all constraints—distance, shape and texture—in their
system (distance values of 2.0 and 1.6 mm, respectively).
However, comparisons between different segmentation ap-
proaches must be done cautiously since their evaluations
rely on different datasets and possibly different acquisition
protocols.

Table 2 also presents the results obtained with the initial
segmentation. As expected, it can be seen that the deformable
model provides a much better result than the initialization,
the 95th percentile decreasing from 5.1 to 2.2 mm and the
similarity index increasing from 0.79 to 0.87. The initial
segmentation, which also makes use of spatial relations to
define a ROI, provides a reasonable first approximation of
the caudate nucleus. In a few cases, we assessed the influence
of the initialization on the final result by dilating or eroding
the initial segmentation. We found that the final result is
not very sensitive to initial overestimations (i.e. when the
initialization is dilated), because the spatial relation force
pulls back the deformable model. On the contrary, it may be
more sensitive to underestimations (i.e. erosions), because
narrow parts of the caudate nucleus cannot be recovered by
the deformable model, this being mainly due to the internal
force. The aim of the initial segmentation is precisely to
address this issue by providing a starting point that allows
converging into these narrow regions.

2 It should be noted that this 95th percentile no longer satisfies the
definition of a distance.
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Fig. 7. Results obtained for the lateral ventricles, the third ventricle, the caudate nuclei and the thalami. Top: 3D rendering superimposed on an axial
slice. Bottom: structure contours superimposed on axial, sagittal and coronal slices. 3D images have been visualized using the Anatomist software
(www.anatomist.info), developed at SHFJ, Orsay, France.

Table 2
Evaluation of the segmentation of the caudate nucleus

95th percent.
(in mm)

Mean dist.
(in mm)

Similarity
index

Final result 2.2 ± 0.9
(1.4–4.4)

1.0 ± 0.3
(0.7–1.5)

0.87±0.02
(0.81–0.90)

Initialization 5.1 ± 2.0
(2.0–8.9)

1.5 ± 0.5
(0.8–2.7)

0.79±0.03
(0.72–0.84)

Without FR 6.1 ± 4.6
(1.4–13.9)

1.8 ± 1.1
(0.7–3.7)

0.80±0.08
(0.66–0.89)

The table reports the values of the 95th percentile of the symmetrized
Hausdorff distance, the mean absolute distance and the similarity in-
dex S. In each cell, the results obtained on the 20 caudate nuclei (10
images and 2 hemispheres) are reported as mean±standard-deviation
with the range in parentheses. The upper row indicates the result ob-
tained with our method. The middle one indicates the results obtained
with the initial segmentation. The lower row indicates the results that
would be obtained without the force FR corresponding to the spatial
relations.

Since it is difficult and tedious to obtain manual anno-
tations of the images, the quantitative evaluation was per-
formed only for the caudate nucleus. However, a simple
visual examination of the segmentation of the thalamus con-
firms, in a qualitative way, the good results obtained with
the proposed method.

4.4.3. Contribution of spatial relations
To assess the contribution of the integration of spatial re-

lations in the deformable model, we compared our results
to those that would be obtained without the force FR corre-
sponding to the spatial relations. As shown in Fig. 8, with-
out the spatial relations, the deformable model may con-
verge beyond the limit of the caudate, into neighboring
structures such as the putamen and the nucleus accumbens.
Table 2 presents the results that would be obtained without
the force FR . The 95th percentile of the symmetrized Haus-
dorff distance is much higher, with a mean of 6.1 mm and a
maximum of 13.9 mm, indicating that the deformable model



1412 O. Colliot et al. / Pattern Recognition 39 (2006) 1401–1414

Fig. 8. Influence of spatial relations on the evolution of the deformable
model. The force corresponding to spatial relations prevents the model
from converging beyond the limit of the structure. Left: result obtained
without the spatial relations. Right: result obtained with the spatial rela-
tions.
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Fig. 9. Mean similarity indices obtained for different values of the pa-
rameters � and � attached to the trade-off between the data term FC and
the spatial relations force FR in Eq. (17). With � + � = 1, � and � vary
between 0 and 1. The similarity is very stable for � ∈ [0.3; 0.8] (and
thus � ∈ [0.2; 0.7]), the difference being smaller than 0.01. Outside this
interval, the similarity is strongly decreased (the value corresponding to
� = 0 is S = 0 but is not shown to facilitate visualization).

has progressed beyond the boundary of the structure. The
similarity index can also be severely decreased, going as low
as 0.66. The spatial relations are thus a key element of the
robustness of the method.

4.4.4. Influence of parameters
To conclude this section, let us comment on the tuning

of the parameters. For the initial segmentation, the size of
the morphological opening was iteratively estimated. The
characteristics of the extracted objects were automatically
checked to match those of the target structure thus ensuring
that the object has been disconnected from its neighbors.

For the deformable model, regularization parameters are
not sensitive since we used the same parameters for all im-
ages. It is also the case of the ones involved in the defini-
tion of the data term. The spatial relation parameters have
been estimated in a training phase and they are highly stable
(Section 4.3).

Finally, we evaluated the influence of the parameters that
are specific to the integration of spatial relations in the de-
formable model. These are the parameters � and � attached
to the trade-off between the data term FC and the spatial
relations force FR in Eq. (17). For this evaluation, we com-
puted the similarity that is obtained for the caudate nucleus
with values of � and � between 0 and 1 (Fig. 9). The re-
sults were very stable for values � ∈ [0.3; 0.8] (and thus � ∈
[0.2; 0.7]). The wide range of acceptable values for these
parameters show that they are not sensitive. This can be ex-
plained by the fact that the two components of the external
force influence the deformable model in different regions of
the space.

5. Conclusion

We proposed an approach to integrate a new type of con-
straints, based on spatial relations, in deformable models.
Spatial relations are represented using fuzzy subsets of the
3D space. The integration is based on the construction of
new external forces derived from a fuzzy set. Three different
construction methods were proposed. The forces possess the
properties needed to make the deformable model converge
towards the regions where the relations are satisfied. In the
present work, we used distance and directional relations but
the proposed framework is general and can handle any type
of relation represented by a spatial fuzzy set. In particular,
it is not restricted to basic relations but can be used with
complex relationships such as “between” for which fuzzy
spatial representations were proposed [14]. Moreover, the
framework is valid in two or three dimensions and does not
depend on the choices made concerning the design of the
deformable model. We introduced a training step to estimate
the parameters involved in the definition of the spatial re-
lations, making the procedure robust to the choice of the
trade-off between the two terms of the external force. How-
ever, it should be noted that the spatial relations are defined
from prior anatomical knowledge and not directly extracted
from the training set. The training step is thus not manda-
tory and the parameters can also be set manually, as was
done for the thalamus in our experiments.

This framework has been applied to the segmentation of
brain subcortical structures in MRI including the ventricles,
the caudate nuclei and the thalami. The quantitative vali-
dation performed for the caudate nucleus showed that the
method reaches a high degree of accuracy. Our experiments
demonstrated that the introduction of spatial relations in a
deformable model can substantially improve the segmenta-
tion of objects with ill-defined boundaries. The results were
not sensitive to the tuning of the parameters, the most impor-
tant ones being estimated using a training phase. However,
the objective of this paper was primarily to propose an orig-
inal methodology for integrating spatial relations into de-
formable models and to demonstrate its validity and utility
through a brain segmentation application. For the particular
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application of brain structure segmentation, the robustness
of the approach should be quantitatively assessed in a larger
population and with different acquisition protocols.

The main perspectives of this work are the combination
of spatial relations with shape constraints in a deformable
model and the simultaneous segmentation of different ob-
jects. To this purpose, it would be useful to propose methods
allowing to update the fuzzy sets corresponding to spatial
relations during the evolution process, avoiding a complete
recomputation at each step. Finally, the proposed framework
is general and can be applied to other structures or images.
Potential applications concern medical imaging (we have
applied some principles of the methodology to the segmen-
tation of thoracic and abdominal structures in CT and PET
images [51]) or the tracking of facial features.
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